Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 34(5): 857-868, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37052511

RESUMO

Ion mobility spectrometers (IMS) separate ions based on their ion mobility, which depends mainly on collision cross-section, mass, and charge of the ions. However, the performance is often hampered in electrospray ionization (ESI) by the appearance of multiple ion mobility peaks in the spectrum for the same analyte due to clustering and additional sodium adducts. In this work, we investigate the influence of solvents and buffer additives on the detected ion mobility peaks using ESI. Additionally, we investigate the effects of an additional chemical ionization (CI) induced by plasma ionization on the ions formed by electrospray. For this purpose, we coupled our high-resolution IMS with a resolving power of Rp = 100 to a time-of-flight mass spectrometer. Depending on the analyte and the chosen additives, the ionization process can be influenced during the electrospray process. For the herbicide isoproturon, the addition of 5 mM sodium acetate results in the formation of the sodium adduct [M + Na]+, which is reflected in the ion mobility K0 of 1.22 cm2/(V·s). In contrast, the addition of 5 mM ammonium acetate yields the protonated species [M + H]+ and a correspondingly higher K0 of 1.29 cm2/(V·s). In some cases, as with the herbicide pyrimethanil, the addition of sodium acetate can completely suppress ionizations. By carefully choosing the solvent additive for ESI-IMS or additional CI, the formation of different ion mobility peaks can be observed. This can facilitate the assignment of ions to ion mobility peaks using IMS as a compact, stand-alone instrument, e.g., for on-site analysis.

2.
Anal Chim Acta ; 1239: 340649, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36628746

RESUMO

Here, we present a new and an easy to assemble dielectric barrier discharge plasma ionization source based on printed circuit boards with two parallel isolated electrodes for generating a plasma inside an inert fused silica capillary. For demonstration, this plasma source is coupled to an ion mobility spectrometer. With two different sample gas feeds the analytes can either pass through the plasma or bypass the plasma before entering the reaction region of the ion mobility spectrometer, allowing for different ionization pathways, e.g. electron impact ionization, ionization by excited species, e.g. helium metastables, or chemical ionization via reactant ions generated inside or downstream of the plasma. The plasma source, in particular, the electrode geometry and the capillary diameter were designed with the help of electric field simulations. A rectangular electrode with a height of at least twice the outer diameter of the capillary turned out to be ideal, in both the simulation and the experiment. Furthermore, a simple control electronics has been developed, which can be easily applied to other plasma sources. With the plasma source presented here, detection limits in the mid pptv range have been reached.


Assuntos
Íons
3.
Sensors (Basel) ; 23(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36679444

RESUMO

Amino acids belong to the most important compounds for life. They are structural components of proteins and required for growth and maintenance of cells. Essential amino acids cannot be produced by the organism and must be ingested through the nutrition. Therefore, the detection of amino acids is of great interest when analyzing cell culture media and nutrition. In this work, we present a split-ring resonator as a simple but sensitive detector for amino acids. Split-ring resonators are RLC resonant circuits with a split capacitance and thus a resonance frequency that depends on the electromagnetic properties of a liquid sample at the split capacitance. Here, the split capacitance is an interdigital structure for highest sensitivity and covered with a fluidic channel for flow through experiments. First measurements with a vector network analyzer show detection limits in the range from 105 µM for glutamic acid to 1564 µM for isoleucine, depending on the electromagnetic properties of the tested amino acids. With an envelope detector for continuous recording of the resonance frequency, the split-ring resonator can be used in ion chromatography. At a flow rate of 0.5 mL/min, it reaches limits of detection of 485 µM for aspartic acid and 956 µM for lysine.


Assuntos
Aminoácidos , Ácido Glutâmico , Isoleucina , Capacitância Elétrica , Estado Nutricional
4.
Anal Chem ; 94(44): 15440-15447, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36301910

RESUMO

A growing demand for low-cost gas sensors capable of detecting the smallest amounts of highly toxic substances in air, including chemical warfare agents (CWAs) and toxic industrial chemicals (TICs), has emerged in recent years. Ion mobility spectrometers (IMS) are particularly suitable for this application due to their high sensitivity and fast response times. In view of the preferred mobile use of such devices, miniaturized ion drift tubes are required as the core of IMS-based lightweight, low-cost, hand-held gas detectors. Thus, we evaluate the suitability of a miniaturized ion mobility spectrometer featuring an ion drift tube length of just 40 mm and a high resolving power of Rp = 60 for the detection of various CWAs, such as nerve agents sarin (GB), tabun (GA), soman (GD), and cyclosarin (GF), as well as the blister agent sulfur mustard (HD), the blood agent hydrogen cyanide (AC) and the choking agent chlorine (CL). We report on the limits of detection reaching minimum concentration levels of, for instance, 29 pptv for sarin (GB) within an averaging time of only 1 s. Furthermore, we investigate the effects of precursors, simulants, and other common interfering substances on false positive alarms.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Agentes Neurotóxicos , Soman , Substâncias para a Guerra Química/análise , Sarina/química , Gás de Mostarda/análise , Soman/química
5.
Anal Chem ; 94(2): 777-786, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34984907

RESUMO

Ion mobility spectrometers (IMS) are well suited for detecting trace gases down to levels at ppbv and even pptv within 1 s of analysis time when using chemical ionization. The measuring principle is based on the separation and detection of the ionized constituents of a sample. Depending on the sample composition, certain ionization sources create both positive and negative analyte ions, but the simultaneous detection of both ion polarities usually requires two drift tubes. Contained within this effort, we present an alternative approach for detecting both ion polarities using one single drift tube that can switch the polarity of the drift tube within 12 ms. This technique allows for generating one positive and one negative ion mobility spectrum, each with a drift time range of 13 ms (minimum reduced ion mobility of K0 = 0.72 cm2 V-1 s-1), within a total experiment time of 50 ms. Additionally, ions are continuously generated in the ionization region during both the polarity switching and the analysis of one of the polarities, which allows for an effective ionization/reaction time of 25 ms. Comparable to the performance of similar instrument designs we reported previously, the presented device has a high resolving power of RP = 70 with a drift length of 51 mm. The limits of detection are for the monomers between 70 and 370 pptv and for the dimers between 450 and 800 pptv for 1 s of averaging for various ketones, methyl salicylate, and chlorinated hydrocarbons. Although this work focuses on applying ultra-fast polarity switching to an existing IMS, the techniques shown here may be applied to other IMS implementations for different applications.

6.
Anal Chem ; 94(2): 1211-1220, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34963287

RESUMO

Due to their high sensitivity and compact design, ion mobility spectrometers are widely used to detect toxic industrial chemicals (TICs) in air. However, when analyzing complex gas mixtures, classical ion mobility spectrometry (IMS) suffers from false-positive rates due to limited resolving power or false-negative rates caused by competitive ion-molecule reactions and the resulting suppression of certain analyte ions. To overcome these limitations, high-kinetic energy IMS (HiKE-IMS) was introduced some years ago. In contrast to classical IMS, HiKE-IMS is operated at decreased pressures of 20···60 mbar and high reduced electric field strengths E/N of up to 120 Td. Under these conditions, the influence of competitive ion-molecule reactions on the prevailing ion population should be less pronounced, thus reducing false negatives. Additionally, effects such as fragmentation and field-dependent ion mobility may help to reduce false positives. In this work, the capabilities and limitations of HiKE-IMS in the field of on-site detection of the volatile TICs NH3, HCN, H2S, HCl, NO2, Cl2, and SO2 are evaluated for the first time. Based on the limits of detection and the extent of spectral and chemical cross-sensitivities in gas mixtures, the results obtained for HiKE-IMS are compared with those obtained for classical IMS. It is shown that HiKE-IMS is less sensitive in comparison to classical IMS. However, when used for TIC detection, the reduced sensitivity of HiKE-IMS is not a major drawback. With values around 1 ppmv, the achievable limits of detection for almost all TICs are below the AEGL-2 (4h) levels. Furthermore, in comparison to classical IMS, it is still striking that HiKE-IMS shows significantly less spectral and chemical cross-sensitivities and thus exhibits considerably lower false-positive and false-negative rates. Overall, it thus turns out that HiKE-IMS is a promising alternative to classical IMS in the field of on-site detection of TICs.


Assuntos
Gases , Espectrometria de Mobilidade Iônica , Íons
7.
Sensors (Basel) ; 21(7)2021 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-33916616

RESUMO

The detection of exceedingly small masses still presents a large challenge, and even though very high sensitivities have been archived, the fabrication of those setups is still difficult. In this paper, a novel approach for a co-resonant mass detector is theoretically presented, where simple fabrication is addressed in this early concept phase. To simplify the setup, longitudinal and bending vibrations were combined for the first time. The direct integration of an aluminum nitride (AlN) piezoelectric element for simultaneous excitation and sensing further simplified the setup. The feasibility of this concept is shown by a model-based approach, and the underlying parameter dependencies are presented with an equivalent model. To include the geometrical and material aspects, a finite element model that supports the concept as a very promising approach for future nano-mass detectors is established.

8.
Anal Chem ; 92(19): 12967-12974, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32880438

RESUMO

Ion mobility spectrometry is a powerful detection method widely used in various applications. Particularly in field applications, ion mobility spectrometers (IMSs) are useful because of their extremely low detection limits at short measuring periods and their compact and robust design. However, especially small IMSs suffer from the consequences of low resolving power when compared to laboratory systems. Therefore, in this paper, we present a new approach to increase the resolving power of a drift time IMS without employing higher drift voltages and bulky power supplies. The so-called moving field IMS (MOF-IMS) presented here allows a more effective use of the available voltage because of a segmented drift region where only a small part is supplied with voltage. Even with the basic version of an MOF-IMS presented here, it was possible to increase the resolving power by 60% from 60 to 95 without increasing the required drift voltage.

9.
Anal Chem ; 92(17): 11834-11841, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32786212

RESUMO

Ion mobility spectrometers (IMS) with field switching ion shutters are an excellent choice for trace gas detection, being extremely sensitive while having fast response times. However, as different target molecules may form positive, negative, or even ions of both polarities, it is beneficial to simultaneously detect both ion polarities. Here, we present a dual drift tube IMS with a new dual field switching ion shutter for gating both ion polarities and an X-ray ionization source in orthogonal configuration. The dual field switching ion shutter allows significantly improved ion gating and ion accumulation due to improved shielding of the ionization region from the drift field. Equipped with two 75 mm long high-performance drift tubes, the dual IMS reaches high resolving power of R = 90 with detection limits in the lower pptv range for different ketones, chlorinated hydrocarbons and methyl salicylate that forms ions in both polarities.

10.
Opt Express ; 23(5): 6613-25, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836878

RESUMO

The experimental documentation of the properties of an optical system represents a particular challenge. Besides the measurement of focal quality and field distortions, telecentric systems have to yield a parallel beam propagation direction. In this paper we propose a method to test, document and optimize the telecentricity of a laser scanning system by scanning two crossed polka dot beam splitters at once. By separating both beam splitters in Fourier space we were able to detect tilting angles below 2 · 10(-3) rad for four different laser wavelengths within the same optical system. By this we determined the optimum system parameters for our scanning laser optical tomography (SLOT) setup.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...